//! # Solver //! //! Provides `Variables`, `Domain` structs and `solve_all` function. use std::fmt; use std::hash::Hash; use std::clone::Clone; use std::collections::HashMap; /// An assignments map of variables pub type Variables<'a, V, K> = HashMap>; enum Assignment<'a, V, K> { Update(K, &'a V), Clear(K) } pub type DomainValues<'a, V> = Vec<&'a V>; /// The domain of values that can be assigned to variables #[derive(Clone)] pub struct Domain { values: Vec } impl Domain { pub fn new(values: Vec) -> Domain { Domain { values } } /// Returns all values of a Domain instance pub fn all(&self) -> DomainValues { self.values.iter().collect() } /// Returns a Filter filter applied to inner values /// /// # Examples /// /// ``` /// # extern crate planner; /// # use planner::solver::Domain; /// let domain = Domain::new(vec![1,2,3]); /// fn even(i: &i32) -> bool { /// i % 2 == 0 /// }; /// assert_eq!(domain.filter(even), vec![&2]); /// assert_eq!(domain.filter(|i: &i32| i % 2 == 1), vec![&1,&3]); /// ``` pub fn filter(&self, filter_func: fn(&V) -> bool) -> DomainValues { self.values .iter() .filter(|v: &&V| filter_func(*v)) .collect() } } impl fmt::Debug for Domain { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Domain<{:?}>", self.values) } } pub type Constraint<'a,V, K> = fn(&Variables<'a,V, K>) -> bool; pub struct Problem<'a, V, K> { /// The initial assignements map variables: Variables<'a, V, K>, /// Each variable has its associated domain domains: HashMap>, /// Set of constraints to validate constraints: Vec>, } impl<'a,V, K: Eq + Hash + Clone> Problem<'a, V, K> { pub fn build() -> ProblemBuilder<'a,V, K> { ProblemBuilder::new() } pub fn from_template() -> Problem<'a, V, K> { let mut builder = Self::build(); builder.finish() } /// Returns all possible Updates for next assignements, prepended with /// a Clear to ensure the variable is unset before when leaving the branch. fn _push_updates(&self) -> Option>> { // TODO: should be able to inject a choosing strategy if let Some((key,_)) = self.variables.iter().find(|(_, val)| val.is_none()) { let domain_values = self.domains.get(key).expect("No domain for variable !"); // Push a clear assignment first, just before going up the stack. let mut updates = vec![Assignment::Clear(key.clone())]; if domain_values.is_empty() { panic!("No value in domain !"); } // TODO: should be able to filter domain values (inference, pertinence) for value in domain_values.into_iter() { updates.push(Assignment::Update(key.clone(), *value)); } Some(updates) } else { // End of assignements None } } /// Checks that the current assignments doesn't violate any constraint fn _is_valid(&self) -> bool { for validator in self.constraints.iter() { if validator(&self.variables) == false { return false; } } return true; } /// Returns all complete solutions, after visiting all possible outcomes using a stack (DFS). pub fn solve_all(&mut self) -> Vec> where V: Clone + fmt::Debug, K: Clone + fmt::Debug, { let mut solutions: Vec> = vec![]; let mut stack: Vec> = vec![]; stack.append(&mut self._push_updates().unwrap()); loop { let node = stack.pop(); if node.is_none() { break; }; match node.unwrap() { Assignment::Update(key, val) => { // Assign the variable and open new branches, if any. *self.variables.get_mut(&key).unwrap() = Some(val); // TODO: handle case of empty domain.values if let Some(mut nodes) = self._push_updates() { stack.append(&mut nodes); } else { // Assignements are completed if self._is_valid() { solutions.push(self.variables.clone()); }; }; }, Assignment::Clear(key) => { // We are closing this branch, unset the variable *self.variables.get_mut(&key).unwrap() = None; }, }; }; solutions } } pub struct ProblemBuilder<'a, V, K>(Problem<'a, V, K>); impl<'a, V, K: Eq + Hash + Clone> ProblemBuilder<'a, V, K> { fn new() -> ProblemBuilder<'a, V, K> { ProblemBuilder( Problem{ variables: Variables::new(), domains: HashMap::new(), constraints: Vec::new(), }) } pub fn add_variable(mut self, name: K, domain: Vec<&'a V>, value: Option<&'a V>) -> Self { self.0.variables.insert(name.clone(), value); self.0.domains.insert(name, domain); self } pub fn add_constraint(mut self, cons: Constraint<'a,V, K>) -> Self { self.0.constraints.push(cons); self } pub fn finish(self) -> Problem<'a, V, K> { self.0 } } #[cfg(test)] mod tests { #[test] fn test_solver_find_pairs() { use super::*; let domain = Domain::new(vec![1,2,3]); let mut problem: Problem<_, _> = Problem::build() .add_variable(String::from("Left"), domain.all(), None) .add_variable(String::from("Right"), domain.all(), None) .add_constraint(|assign: &Variables| { assign.get("Left").unwrap() == assign.get("Right").unwrap() }) .finish(); let solutions: Vec> = vec![ [("Left".to_string(), Some(&3)), ("Right".to_string(), Some(&3)),].iter().cloned().collect(), [("Left".to_string(), Some(&2)), ("Right".to_string(), Some(&2)),].iter().cloned().collect(), [("Left".to_string(), Some(&1)), ("Right".to_string(), Some(&1)),].iter().cloned().collect(), ]; assert_eq!(problem.solve_all(), solutions); } #[test] fn test_solver_find_pairs_with_initial() { use super::*; let domain = Domain::new(vec![1,2,3]); let mut problem: Problem<_, _> = Problem::build() .add_variable("Left".to_string(), domain.all(), None) .add_variable("Right".to_string(), domain.all(), Some(&2)) .add_constraint( |assign: &Variables| { assign.get("Left").unwrap() == assign.get("Right").unwrap() }) .finish(); let solutions: Vec> = vec![ [("Left".to_string(), Some(&2)), ("Right".to_string(), Some(&2)),].iter().cloned().collect(), ]; assert_eq!(problem.solve_all(), solutions); } }