Compare commits

..

2 Commits

Author SHA1 Message Date
e5b16ae955 some more thinking... 2019-02-19 16:24:05 +01:00
f69d94d758 thinking about rules implementation... 2019-02-19 15:57:27 +01:00
3 changed files with 146 additions and 42 deletions

View File

@@ -8,6 +8,22 @@
//! by a key of type `K`.
//! A constraint owns references to actual values assigned,
//! used to perform checks.
//!
//!
//! The problem is to clarify the way Constraints operate.
//! Do they compute their status from some data on demand ?
//! Do they keep their status updated by watching the Variables
//! they act on ?
//! Worse, do they have superpowers ?
//! Could they filter on a variable domain, according to some other variable
//! state ? This would mean that constraints won't judge a result, but guide
//! the solving process to avoid erroring paths, like a constraint-driven
//! solving. This would be powerfull but maybe far too complex...
//!
//! On the other hand, we can implement a simple Observer pattern, with strong
//! coupling to [`Problem`](crate::solver::Problem).
//! Because of this, we can safely play with private fields of Problem, and in
//! return, provide a public api to build specific constraints.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Status {
@@ -93,7 +109,7 @@ mod tests {
use super::Constraint;
let domain = Domain::new(vec![1, 2, 3]);
let mut problem = Problem::build()
let problem = Problem::build()
.add_variable("Left", domain.all(), None)
.add_variable("Right", domain.all(), None)
.add_constraint(Constraint::new(vec![&"Left", &"Right"]))

View File

@@ -1,16 +1,56 @@
//! Rules used by the `planner`
//! A rule is a constraint on valid solutions, but also provides insights
//! and eventually inferences to optimize the solving process.
//!
//! * Basic repartition
//! * All different meals
//! * Map recipes categories to each meals
//! * (Eating a dish over two days (leftovers))
//! * Nutritional values
//! * Per day : according to user profile (man: 2000kcal, woman: 1800kcal)
//! * Per meal : some meals should have higher nutrional values than others
//!
//! * Ingredients
//! * Per week : should use most of a limited set of ingredients (excluding
//! condiments, ...)
//! * To consume : must use a small set of ingredients (leftovers)
//!
//!
//! Price
//! - Per week : should restrict ingredients cost to a given amount
// Nutritional values
// - Per day : according to user profile (man: 2000kcal, woman: 1800kcal)
// - Per meal : some meals should have higher nutrional values than others
enum Status {
Ok,
Violated,
}
// Ingredients
// - Per week : should use most of a limited set of ingredients (excluding
// condiments, ...)
// - To consume : must use a small set of ingredients (leftovers)
//
trait Rule {
type Key;
type Value;
// Price
// - Per week : should restrict ingredients cost to a given amount
fn status(&self, state: (Vec<&Self::Key>, Vec<&Self::Value>));
fn update(&self, idx: usize, value: Option<Self::Value>) -> Option<Filter>;
};
struct AllDifferentMeals;
impl Rule for AllDifferentMeals {
type State = Vec<Recipe>;
fn status(&self, _: Self::State) -> Status {
Status::Ok // Always enforced by update rule
}
fn update(&self, _: Self::State) -> Option<Filter> {
// Returns a filter excluding this value from domain.
// so that it is impossible to select the same meal twice.
None
}
}
struct FilterRecipeByMeals; // Essentially work on domain
struct NutritionalByDayAverageReq;
struct NutritionalByMealAverageValues;
struct IngredientsInFridge;
struct IngredientsMustUse;

View File

@@ -105,6 +105,46 @@ impl<V: fmt::Debug> fmt::Debug for Domain<V> {
}
}
/// Or we can have a much more complex version of Domain.
/// We want to retrieve a filtered domain for each variable.
/// Filters will be static (filter by category,...) or dynamic
/// (inserted by rules updates).
///
/// For every variable, we can retrieve its filtered values (values,
/// filtered by all globals, filtered by one local).
/// Plus, set a dynamic filter that will apply to all other variables.
/// Of course, it also affects this variable, but considering that dynamic
/// filters are cleared and repopulated on every assign, this side-effect
/// can never occur.
struct SDomain<V, Filter> {
values: Vec<V>,
global_filters: Vec<Filter>, // Globals are dynamic Filters
local_filters: Vec<Filter>, // Locals are static Filters
}
impl<V, F> SDomain<V, F> {
fn new(values: Vec<V>) -> Self {
Self {
values,
global_filters: Vec::new(),
local_filters: Vec::new(),
}
}
/// Returns the current domain values for a variable by index
fn get(&self, idx: usize) -> DomainValues<V> {
self.values
.iter()
.collect()
}
/// Adds a dynamic filter to globals, identified by its setter's id
/// /!\ Previously set filters are overriden, hence dynamic
fn set_global(&mut self, setter: usize, filter: F) {
self.global_filters[setter] = filter;
}
}
//pub type Constraint<'a,V> = fn(&Variables<'a,V>) -> bool;
@@ -116,7 +156,7 @@ impl<V: fmt::Debug> fmt::Debug for Domain<V> {
pub struct Problem<'p, V, K> {
keys: Vec<K>,
/// The initial assignements map
/// The initial assignements
variables: Variables<'p, V>,
/// Each variable has its associated domain
domains: Vec<DomainValues<'p,V>>,
@@ -139,18 +179,19 @@ impl<'p, V: PartialEq, K: Eq + Hash + Clone> Problem<'p, V, K> {
/// Returns all possible Updates for next assignements, prepended with
/// a Clear to ensure the variable is unset before when leaving the branch.
fn _push_updates(&self) -> Option<Vec<Assignment<'p,V>>> {
// TODO: should be able to inject a choosing strategy
if let Some(key) = self._next_assign() {
if let Some(idx) = self._next_assign() {
// TODO: Domain will filter possible values for us
// let values = self.domain.get(idx);
let domain_values = self.domains
.get(key)
.get(idx)
.expect("No domain for variable !");
// TODO: handle case of empty domain.values
assert!(!domain_values.is_empty());
// Push a clear assignment first, just before going up the stack.
let mut updates = vec![Assignment::Clear(key.clone())];
// TODO: should be able to filter domain values (inference, pertinence)
let mut updates = vec![Assignment::Clear(idx.clone())];
domain_values.iter().for_each(|value| {
updates.push(
Assignment::Update(key, *value)
Assignment::Update(idx, *value)
);
});
Some(updates)
@@ -160,6 +201,7 @@ impl<'p, V: PartialEq, K: Eq + Hash + Clone> Problem<'p, V, K> {
}
fn _next_assign(&self) -> Option<usize> {
// TODO: should be able to inject a choosing strategy
self.variables.iter()
.enumerate()
.find_map(|(idx, val)| {
@@ -180,6 +222,28 @@ impl<'p, V: PartialEq, K: Eq + Hash + Clone> Problem<'p, V, K> {
&self.keys[idx]
}
fn _get_solution(&self) -> Solution<'p, V, K> {
// Returns the current state wrapped in a Solution type.
self.keys.iter().cloned()
.zip(self.variables.iter().cloned())
.collect()
}
/// Assigns a new value to the given index, then calls update
/// on every constraints.
fn _assign(&mut self, idx: usize, value: Option<&'p V>) {
self.variables[idx] = value;
let var_key = &self.keys[idx];
// TODO: manage dynamic filters on Domain
// let filters: Filter::Chain = self.constraints.iter_mut().map([...]).collect();
// self.domain.set_global(idx, filters);
self.constraints.iter_mut()
.for_each(|c| {
c.update(&var_key, value);
});
}
fn _solve(&mut self, limit: Option<usize>) -> Vec<Solution<'p, V, K>> {
let mut solutions: Vec<Solution<V, K>> = vec![];
let mut stack: Vec<Assignment<'p, V>> = vec![];
@@ -204,35 +268,19 @@ impl<'p, V: PartialEq, K: Eq + Hash + Clone> Problem<'p, V, K> {
match node.unwrap() {
Assignment::Update(idx, val) => {
// Assign the variable and open new branches, if any.
self.variables[idx] = Some(val);
{
let v_key = &self.keys[idx];
self.constraints.iter_mut().for_each(|cons| {
cons.update(&v_key, Some(val));
});
}
// TODO: handle case of empty domain.values
self._assign(idx, Some(val));
if let Some(mut nodes) = self._push_updates() {
stack.append(&mut nodes);
} else {
// Assignements are completed
if self._is_valid() {
solutions.push(
// Builds Solution
self.keys.iter().cloned()
.zip(self.variables.iter().cloned())
.collect()
);
solutions.push(self._get_solution());
};
};
},
Assignment::Clear(idx) => {
// We are closing this branch, unset the variable
self.variables[idx] = None;
let v_key = &self.keys[idx];
self.constraints.iter_mut().for_each(|cons| {
cons.update(&v_key, None);
});
self._assign(idx, None);
},
};
};
@@ -268,11 +316,11 @@ impl<'p, V, K: Eq + Hash + Clone> ProblemBuilder<'p, V, K> {
})
}
pub fn add_variable(mut self, name: K, domain: Vec<&'p V>, value: Option<&'p V>) -> Self
pub fn add_variable(mut self, name: K, static_filter: Vec<&'p V>, initial: Option<&'p V>) -> Self
{
self.0.keys.push(name);
self.0.variables.push(value);
self.0.domains.push(domain);
self.0.variables.push(initial);
self.0.domains.push(static_filter);
self
}
@@ -293,7 +341,7 @@ mod tests {
fn test_solver_find_pairs() {
use super::*;
let domain = Domain::new(vec![1,2,3]);
let mut problem: Problem<_, _> = Problem::build()
let problem: Problem<_, _> = Problem::build()
.add_variable(String::from("Left"), domain.all(), None)
.add_variable(String::from("Right"), domain.all(), None)
.finish();
@@ -311,7 +359,7 @@ mod tests {
fn test_solver_find_pairs_with_initial() {
use super::*;
let domain = Domain::new(vec![1,2,3]);
let mut problem: Problem<_, _> = Problem::build()
let problem: Problem<_, _> = Problem::build()
.add_variable("Left".to_string(), domain.all(), None)
.add_variable("Right".to_string(), domain.all(), Some(&2))
.finish();