Compare commits
4 Commits
4bc04bd7e3
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| e5b16ae955 | |||
| f69d94d758 | |||
| 619542357b | |||
| 4e5aab323e |
@@ -57,6 +57,7 @@ pub mod ingredients {
|
||||
use super::{SqliteConnection, schema};
|
||||
use super::diesel::prelude::*;
|
||||
|
||||
/// A wrapper of [`IngredientList`] with DB connection capacity.
|
||||
pub struct IngredientListManager<'a>(&'a SqliteConnection, IngredientList);
|
||||
|
||||
impl<'a> IngredientListManager<'a> {
|
||||
@@ -98,12 +99,9 @@ pub mod ingredients {
|
||||
fn find(conn: &SqliteConnection, name: &str) -> Option<Ingredient> {
|
||||
use self::schema::ingredients::dsl::*;
|
||||
|
||||
match ingredients.filter(alias.like(name))
|
||||
.first(conn)
|
||||
{
|
||||
Ok(ingdt) => Some(ingdt),
|
||||
Err(_) => None,
|
||||
}
|
||||
ingredients.filter(alias.like(name))
|
||||
.first(conn)
|
||||
.ok()
|
||||
}
|
||||
|
||||
fn create(conn: &SqliteConnection, name: &str) -> Result<i32,String> {
|
||||
|
||||
@@ -144,6 +144,12 @@ pub struct Recipe {
|
||||
pub preparation: String,
|
||||
}
|
||||
|
||||
impl PartialEq for Recipe {
|
||||
fn eq(&self, other: &Recipe) -> bool {
|
||||
self.id == other.id
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Insertable, Debug)]
|
||||
#[table_name="recipes"]
|
||||
pub struct NewRecipe<'a> {
|
||||
|
||||
135
planner/src/constraint.rs
Normal file
135
planner/src/constraint.rs
Normal file
@@ -0,0 +1,135 @@
|
||||
//! Constraints building
|
||||
//!
|
||||
//! # Ideas
|
||||
//!
|
||||
//! Each constraints will be updated on every assignment,
|
||||
//! thus their status is always inspectable.
|
||||
//! A constraint applies to a set of variables, identified
|
||||
//! by a key of type `K`.
|
||||
//! A constraint owns references to actual values assigned,
|
||||
//! used to perform checks.
|
||||
//!
|
||||
//!
|
||||
//! The problem is to clarify the way Constraints operate.
|
||||
//! Do they compute their status from some data on demand ?
|
||||
//! Do they keep their status updated by watching the Variables
|
||||
//! they act on ?
|
||||
//! Worse, do they have superpowers ?
|
||||
//! Could they filter on a variable domain, according to some other variable
|
||||
//! state ? This would mean that constraints won't judge a result, but guide
|
||||
//! the solving process to avoid erroring paths, like a constraint-driven
|
||||
//! solving. This would be powerfull but maybe far too complex...
|
||||
//!
|
||||
//! On the other hand, we can implement a simple Observer pattern, with strong
|
||||
//! coupling to [`Problem`](crate::solver::Problem).
|
||||
//! Because of this, we can safely play with private fields of Problem, and in
|
||||
//! return, provide a public api to build specific constraints.
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub enum Status {
|
||||
Validated,// Solution is valid
|
||||
Unknown, // Constraint cannot resolve yet (unbound variables)
|
||||
Violated, // Solution is invalid
|
||||
}
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
// *Like this
|
||||
enum ValueChecker {
|
||||
AllDifferent,
|
||||
AllSame,
|
||||
}
|
||||
|
||||
pub struct Constraint<'c, V, K> {
|
||||
status: Status,
|
||||
variables: HashMap<&'c K, Option<&'c V>>,
|
||||
// TODO: add a ValueChecker Trait object,
|
||||
// or just a simple Enum.*
|
||||
// to provide the check_status procedure, given
|
||||
// a vector to variables values.
|
||||
}
|
||||
|
||||
impl<'c, V, K> Constraint<'c, V, K>
|
||||
where K: Eq + std::hash::Hash,
|
||||
V: PartialEq,
|
||||
{
|
||||
|
||||
pub fn new(vars: Vec<&'c K>) -> Self {
|
||||
let len = vars.len();
|
||||
Self {
|
||||
status: Status::Unknown,
|
||||
variables: vars.into_iter()
|
||||
.zip(vec![None; len])
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn status(&self) -> &Status {
|
||||
&self.status
|
||||
}
|
||||
|
||||
fn check_status(vars: Vec<&Option<&V>>) -> Status {
|
||||
/// LEts do an hacky NotEqualConstraint
|
||||
let vars_len = vars.len();
|
||||
let set_vars: Vec<&Option<&V>> = vars.into_iter().filter(|v| v.is_some()).collect();
|
||||
let is_complete = vars_len == set_vars.len();
|
||||
for (idx, value) in set_vars.iter().enumerate() {
|
||||
let violated = set_vars.iter()
|
||||
.enumerate()
|
||||
.filter(|(i,_)| *i != idx)
|
||||
.fold(false, |res, (_,v)| {
|
||||
res || v == value
|
||||
});
|
||||
if violated { return Status::Violated; }
|
||||
}
|
||||
match is_complete {
|
||||
true => Status::Validated,
|
||||
false => Status::Unknown,
|
||||
}
|
||||
}
|
||||
|
||||
fn update_status(&mut self) {
|
||||
self.status = Self::check_status(self.variables.values().collect());
|
||||
}
|
||||
|
||||
pub fn update(&mut self, key: &K, new_value: Option<&'c V>) {
|
||||
if let Some(value) = self.variables.get_mut(key) {
|
||||
// Actually update values
|
||||
dbg!(*value = new_value);
|
||||
self.update_status();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
#[test]
|
||||
fn test_all_different_problem() {
|
||||
use crate::solver::{Domain, Problem};
|
||||
use super::Constraint;
|
||||
|
||||
let domain = Domain::new(vec![1, 2, 3]);
|
||||
let problem = Problem::build()
|
||||
.add_variable("Left", domain.all(), None)
|
||||
.add_variable("Right", domain.all(), None)
|
||||
.add_constraint(Constraint::new(vec![&"Left", &"Right"]))
|
||||
.finish();
|
||||
|
||||
let solutions = vec![
|
||||
(("Left", Some(&1)), ("Right", Some(&2))),
|
||||
(("Left", Some(&1)), ("Right", Some(&3))),
|
||||
(("Left", Some(&2)), ("Right", Some(&1))),
|
||||
(("Left", Some(&2)), ("Right", Some(&3))),
|
||||
(("Left", Some(&3)), ("Right", Some(&1))),
|
||||
(("Left", Some(&3)), ("Right", Some(&2))),
|
||||
];
|
||||
let results = problem.solve_all();
|
||||
println!("{:#?}", results);
|
||||
assert!(results.len() == solutions.len());
|
||||
results.into_iter().for_each(|res| {
|
||||
let res = (("Left", *res.get("Left").unwrap()),
|
||||
("Right", *res.get("Right").unwrap())) ;
|
||||
assert!(solutions.contains(&res));
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -3,7 +3,7 @@ use cookbook::recipes::Recipe;
|
||||
|
||||
pub mod solver;
|
||||
pub mod template;
|
||||
|
||||
pub mod constraint;
|
||||
|
||||
pub use solver::{Domain, DomainValues};
|
||||
/// We mainly use Recipe as the domain value type
|
||||
|
||||
@@ -1,16 +1,56 @@
|
||||
//! Rules used by the `planner`
|
||||
//! A rule is a constraint on valid solutions, but also provides insights
|
||||
//! and eventually inferences to optimize the solving process.
|
||||
//!
|
||||
//! * Basic repartition
|
||||
//! * All different meals
|
||||
//! * Map recipes categories to each meals
|
||||
//! * (Eating a dish over two days (leftovers))
|
||||
//! * Nutritional values
|
||||
//! * Per day : according to user profile (man: 2000kcal, woman: 1800kcal)
|
||||
//! * Per meal : some meals should have higher nutrional values than others
|
||||
//!
|
||||
//! * Ingredients
|
||||
//! * Per week : should use most of a limited set of ingredients (excluding
|
||||
//! condiments, ...)
|
||||
//! * To consume : must use a small set of ingredients (leftovers)
|
||||
//!
|
||||
//!
|
||||
//! Price
|
||||
//! - Per week : should restrict ingredients cost to a given amount
|
||||
|
||||
// Nutritional values
|
||||
// - Per day : according to user profile (man: 2000kcal, woman: 1800kcal)
|
||||
// - Per meal : some meals should have higher nutrional values than others
|
||||
enum Status {
|
||||
Ok,
|
||||
Violated,
|
||||
}
|
||||
|
||||
// Ingredients
|
||||
// - Per week : should use most of a limited set of ingredients (excluding
|
||||
// condiments, ...)
|
||||
// - To consume : must use a small set of ingredients (leftovers)
|
||||
//
|
||||
trait Rule {
|
||||
type Key;
|
||||
type Value;
|
||||
|
||||
// Price
|
||||
// - Per week : should restrict ingredients cost to a given amount
|
||||
fn status(&self, state: (Vec<&Self::Key>, Vec<&Self::Value>));
|
||||
fn update(&self, idx: usize, value: Option<Self::Value>) -> Option<Filter>;
|
||||
};
|
||||
|
||||
struct AllDifferentMeals;
|
||||
|
||||
impl Rule for AllDifferentMeals {
|
||||
type State = Vec<Recipe>;
|
||||
|
||||
fn status(&self, _: Self::State) -> Status {
|
||||
Status::Ok // Always enforced by update rule
|
||||
}
|
||||
|
||||
fn update(&self, _: Self::State) -> Option<Filter> {
|
||||
// Returns a filter excluding this value from domain.
|
||||
// so that it is impossible to select the same meal twice.
|
||||
None
|
||||
}
|
||||
}
|
||||
struct FilterRecipeByMeals; // Essentially work on domain
|
||||
|
||||
struct NutritionalByDayAverageReq;
|
||||
struct NutritionalByMealAverageValues;
|
||||
|
||||
struct IngredientsInFridge;
|
||||
struct IngredientsMustUse;
|
||||
|
||||
@@ -6,11 +6,16 @@ use std::hash::Hash;
|
||||
use std::clone::Clone;
|
||||
use std::collections::HashMap;
|
||||
|
||||
/// An assignments map of variables
|
||||
type Variables<'a, V> = Vec<Option<&'a V>>;
|
||||
use crate::constraint::{Status, Constraint};
|
||||
|
||||
/// A solution returned by [`Solver`]
|
||||
pub type Solution<'a, V, K> = HashMap<K, Option<&'a V>>;
|
||||
|
||||
|
||||
/// An assignments map of variables
|
||||
type Variables<'a, V> = Vec<Option<&'a V>>;
|
||||
|
||||
/// Orders used by solver to update variables
|
||||
enum Assignment<'a, V> {
|
||||
Update(usize, &'a V),
|
||||
Clear(usize)
|
||||
@@ -100,8 +105,48 @@ impl<V: fmt::Debug> fmt::Debug for Domain<V> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Or we can have a much more complex version of Domain.
|
||||
/// We want to retrieve a filtered domain for each variable.
|
||||
/// Filters will be static (filter by category,...) or dynamic
|
||||
/// (inserted by rules updates).
|
||||
///
|
||||
/// For every variable, we can retrieve its filtered values (values,
|
||||
/// filtered by all globals, filtered by one local).
|
||||
/// Plus, set a dynamic filter that will apply to all other variables.
|
||||
/// Of course, it also affects this variable, but considering that dynamic
|
||||
/// filters are cleared and repopulated on every assign, this side-effect
|
||||
/// can never occur.
|
||||
struct SDomain<V, Filter> {
|
||||
values: Vec<V>,
|
||||
global_filters: Vec<Filter>, // Globals are dynamic Filters
|
||||
local_filters: Vec<Filter>, // Locals are static Filters
|
||||
}
|
||||
|
||||
pub type Constraint<'a,V> = fn(&Variables<'a,V>) -> bool;
|
||||
impl<V, F> SDomain<V, F> {
|
||||
fn new(values: Vec<V>) -> Self {
|
||||
Self {
|
||||
values,
|
||||
global_filters: Vec::new(),
|
||||
local_filters: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the current domain values for a variable by index
|
||||
fn get(&self, idx: usize) -> DomainValues<V> {
|
||||
self.values
|
||||
.iter()
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Adds a dynamic filter to globals, identified by its setter's id
|
||||
/// /!\ Previously set filters are overriden, hence dynamic
|
||||
fn set_global(&mut self, setter: usize, filter: F) {
|
||||
self.global_filters[setter] = filter;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//pub type Constraint<'a,V> = fn(&Variables<'a,V>) -> bool;
|
||||
|
||||
|
||||
/// Could be more efficient to just use fixed array of options as variables,
|
||||
@@ -109,23 +154,23 @@ pub type Constraint<'a,V> = fn(&Variables<'a,V>) -> bool;
|
||||
/// Domains could be a similar array of DomainValues.
|
||||
/// It makes sense with an array where indexing is O(1)
|
||||
|
||||
pub struct Problem<'a, V, K> {
|
||||
pub struct Problem<'p, V, K> {
|
||||
keys: Vec<K>,
|
||||
/// The initial assignements map
|
||||
variables: Variables<'a, V>,
|
||||
/// The initial assignements
|
||||
variables: Variables<'p, V>,
|
||||
/// Each variable has its associated domain
|
||||
domains: Vec<DomainValues<'a,V>>,
|
||||
domains: Vec<DomainValues<'p,V>>,
|
||||
/// Set of constraints to validate
|
||||
constraints: Vec<Constraint<'a,V>>,
|
||||
constraints: Vec<Constraint<'p,V,K>>,
|
||||
}
|
||||
|
||||
impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
impl<'p, V: PartialEq, K: Eq + Hash + Clone> Problem<'p, V, K> {
|
||||
|
||||
pub fn build() -> ProblemBuilder<'a,V, K> {
|
||||
pub fn build() -> ProblemBuilder<'p,V, K> {
|
||||
ProblemBuilder::new()
|
||||
}
|
||||
|
||||
pub fn from_template() -> Problem<'a, V, K> {
|
||||
pub fn from_template() -> Problem<'p, V, K> {
|
||||
let builder = Self::build();
|
||||
|
||||
builder.finish()
|
||||
@@ -133,19 +178,20 @@ impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
|
||||
/// Returns all possible Updates for next assignements, prepended with
|
||||
/// a Clear to ensure the variable is unset before when leaving the branch.
|
||||
fn _push_updates(&self) -> Option<Vec<Assignment<'a,V>>> {
|
||||
// TODO: should be able to inject a choosing strategy
|
||||
if let Some(key) = self._next_assign() {
|
||||
fn _push_updates(&self) -> Option<Vec<Assignment<'p,V>>> {
|
||||
if let Some(idx) = self._next_assign() {
|
||||
// TODO: Domain will filter possible values for us
|
||||
// let values = self.domain.get(idx);
|
||||
let domain_values = self.domains
|
||||
.get(key)
|
||||
.get(idx)
|
||||
.expect("No domain for variable !");
|
||||
// TODO: handle case of empty domain.values
|
||||
assert!(!domain_values.is_empty());
|
||||
// Push a clear assignment first, just before going up the stack.
|
||||
let mut updates = vec![Assignment::Clear(key.clone())];
|
||||
// TODO: should be able to filter domain values (inference, pertinence)
|
||||
let mut updates = vec![Assignment::Clear(idx.clone())];
|
||||
domain_values.iter().for_each(|value| {
|
||||
updates.push(
|
||||
Assignment::Update(key, *value)
|
||||
Assignment::Update(idx, *value)
|
||||
);
|
||||
});
|
||||
Some(updates)
|
||||
@@ -155,6 +201,7 @@ impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
}
|
||||
|
||||
fn _next_assign(&self) -> Option<usize> {
|
||||
// TODO: should be able to inject a choosing strategy
|
||||
self.variables.iter()
|
||||
.enumerate()
|
||||
.find_map(|(idx, val)| {
|
||||
@@ -165,15 +212,41 @@ impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
|
||||
/// Checks that the current assignments doesn't violate any constraint
|
||||
fn _is_valid(&self) -> bool {
|
||||
for validator in self.constraints.iter() {
|
||||
if validator(&self.variables) == false { return false; }
|
||||
for status in self.constraints.iter().map(|c| c.status()) {
|
||||
if status == &Status::Violated { return false; }
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
fn _solve(&mut self, limit: Option<usize>) -> Vec<Solution<'a, V, K>> {
|
||||
fn _get_key(&self, idx: usize) -> &K {
|
||||
&self.keys[idx]
|
||||
}
|
||||
|
||||
fn _get_solution(&self) -> Solution<'p, V, K> {
|
||||
// Returns the current state wrapped in a Solution type.
|
||||
self.keys.iter().cloned()
|
||||
.zip(self.variables.iter().cloned())
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Assigns a new value to the given index, then calls update
|
||||
/// on every constraints.
|
||||
fn _assign(&mut self, idx: usize, value: Option<&'p V>) {
|
||||
self.variables[idx] = value;
|
||||
let var_key = &self.keys[idx];
|
||||
// TODO: manage dynamic filters on Domain
|
||||
// let filters: Filter::Chain = self.constraints.iter_mut().map([...]).collect();
|
||||
// self.domain.set_global(idx, filters);
|
||||
self.constraints.iter_mut()
|
||||
.for_each(|c| {
|
||||
c.update(&var_key, value);
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
fn _solve(&mut self, limit: Option<usize>) -> Vec<Solution<'p, V, K>> {
|
||||
let mut solutions: Vec<Solution<V, K>> = vec![];
|
||||
let mut stack: Vec<Assignment<'a, V>> = vec![];
|
||||
let mut stack: Vec<Assignment<'p, V>> = vec![];
|
||||
if let Some(mut init_updates) = self._push_updates() {
|
||||
stack.append(&mut init_updates);
|
||||
} else {
|
||||
@@ -195,25 +268,19 @@ impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
match node.unwrap() {
|
||||
Assignment::Update(idx, val) => {
|
||||
// Assign the variable and open new branches, if any.
|
||||
self.variables[idx] = Some(val);
|
||||
// TODO: handle case of empty domain.values
|
||||
self._assign(idx, Some(val));
|
||||
if let Some(mut nodes) = self._push_updates() {
|
||||
stack.append(&mut nodes);
|
||||
} else {
|
||||
// Assignements are completed
|
||||
if self._is_valid() {
|
||||
solutions.push(
|
||||
// Builds Solution
|
||||
self.keys.iter().cloned()
|
||||
.zip(self.variables.iter().cloned())
|
||||
.collect()
|
||||
);
|
||||
solutions.push(self._get_solution());
|
||||
};
|
||||
};
|
||||
},
|
||||
Assignment::Clear(idx) => {
|
||||
// We are closing this branch, unset the variable
|
||||
self.variables[idx] = None;
|
||||
self._assign(idx, None);
|
||||
},
|
||||
};
|
||||
};
|
||||
@@ -221,25 +288,25 @@ impl<'a, V, K: Eq + Hash + Clone> Problem<'a, V, K> {
|
||||
|
||||
}
|
||||
/// Returns all complete solutions, after visiting all possible outcomes using a stack (DFS).
|
||||
pub fn solve_all(&mut self) -> Vec<Solution<'a,V,K>>
|
||||
where V: Clone + fmt::Debug,
|
||||
K: Clone + fmt::Debug,
|
||||
pub fn solve_all(mut self) -> Vec<Solution<'p,V,K>>
|
||||
where V: fmt::Debug,
|
||||
K: fmt::Debug,
|
||||
{
|
||||
self._solve(None) // No limit
|
||||
}
|
||||
|
||||
pub fn solve_one(&mut self) -> Option<Solution<'a,V,K>>
|
||||
where V: Clone + fmt::Debug,
|
||||
K: Clone + fmt::Debug,
|
||||
pub fn solve_one(mut self) -> Option<Solution<'p,V,K>>
|
||||
where V: fmt::Debug,
|
||||
K: fmt::Debug,
|
||||
{
|
||||
self._solve(Some(1)).pop()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ProblemBuilder<'a, V, K>(Problem<'a, V, K>);
|
||||
pub struct ProblemBuilder<'p, V, K>(Problem<'p, V, K>);
|
||||
|
||||
impl<'a, V, K: Eq + Hash + Clone> ProblemBuilder<'a, V, K> {
|
||||
fn new() -> ProblemBuilder<'a, V, K> {
|
||||
impl<'p, V, K: Eq + Hash + Clone> ProblemBuilder<'p, V, K> {
|
||||
fn new() -> ProblemBuilder<'p, V, K> {
|
||||
ProblemBuilder(
|
||||
Problem{
|
||||
keys: Vec::new(),
|
||||
@@ -249,20 +316,20 @@ impl<'a, V, K: Eq + Hash + Clone> ProblemBuilder<'a, V, K> {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn add_variable(mut self, name: K, domain: Vec<&'a V>, value: Option<&'a V>) -> Self
|
||||
pub fn add_variable(mut self, name: K, static_filter: Vec<&'p V>, initial: Option<&'p V>) -> Self
|
||||
{
|
||||
self.0.keys.push(name);
|
||||
self.0.variables.push(value);
|
||||
self.0.domains.push(domain);
|
||||
self.0.variables.push(initial);
|
||||
self.0.domains.push(static_filter);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn add_constraint(mut self, cons: Constraint<'a,V>) -> Self {
|
||||
pub fn add_constraint(mut self, cons: Constraint<'p,V,K>) -> Self {
|
||||
self.0.constraints.push(cons);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn finish(self) -> Problem<'a, V, K> {
|
||||
pub fn finish(self) -> Problem<'p,V, K> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
@@ -274,12 +341,9 @@ mod tests {
|
||||
fn test_solver_find_pairs() {
|
||||
use super::*;
|
||||
let domain = Domain::new(vec![1,2,3]);
|
||||
let mut problem: Problem<_, _> = Problem::build()
|
||||
let problem: Problem<_, _> = Problem::build()
|
||||
.add_variable(String::from("Left"), domain.all(), None)
|
||||
.add_variable(String::from("Right"), domain.all(), None)
|
||||
.add_constraint(|assign: &Variables<i32>| {
|
||||
assign[0] == assign[1]
|
||||
})
|
||||
.finish();
|
||||
|
||||
let solutions: Vec<Solution<i32, _>> = vec![
|
||||
@@ -295,12 +359,9 @@ mod tests {
|
||||
fn test_solver_find_pairs_with_initial() {
|
||||
use super::*;
|
||||
let domain = Domain::new(vec![1,2,3]);
|
||||
let mut problem: Problem<_, _> = Problem::build()
|
||||
let problem: Problem<_, _> = Problem::build()
|
||||
.add_variable("Left".to_string(), domain.all(), None)
|
||||
.add_variable("Right".to_string(), domain.all(), Some(&2))
|
||||
.add_constraint( |assign: &Variables<i32>| {
|
||||
assign[0] == assign[1]
|
||||
})
|
||||
.finish();
|
||||
|
||||
let solutions: Vec<Solution<i32, String>> = vec![
|
||||
|
||||
@@ -100,9 +100,8 @@ mod api {
|
||||
for (var, dom, ini) in template::Template::generate_variables(&domain) {
|
||||
problem = problem.add_variable(var, dom, ini);
|
||||
}
|
||||
let mut problem = problem
|
||||
.add_constraint(|_| true)
|
||||
.finish();
|
||||
let problem = problem.finish();
|
||||
|
||||
if let Some(one_result) = problem.solve_one() {
|
||||
Json(TemplateObject {
|
||||
items: one_result
|
||||
@@ -127,8 +126,6 @@ mod api {
|
||||
solver::{Domain, Problem}
|
||||
};
|
||||
|
||||
println!("{:?}", partial);
|
||||
println!("Building problem");
|
||||
let possible_values = recipes::load_all(&conn);
|
||||
let domain = Domain::new(possible_values);
|
||||
let mut problem = Problem::build();
|
||||
@@ -144,16 +141,15 @@ mod api {
|
||||
&& slot.key.1 == format!("{:?}",var.1)
|
||||
{
|
||||
let id = slot.value.as_ref().unwrap().id;
|
||||
println!("found initial : recipe with id {}", id);
|
||||
//println!("found initial : recipe with id {}", id);
|
||||
Some(id)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
let ini = if let Some(id) = initial_id {
|
||||
// Not working because we're capturing `id`
|
||||
let new_ini = domain.find(|r| {r.id == id});
|
||||
println!("Overrided {:?}", new_ini);
|
||||
//println!("Overrided {:?}", new_ini);
|
||||
new_ini
|
||||
} else {
|
||||
ini
|
||||
@@ -161,9 +157,8 @@ mod api {
|
||||
// If found, override initial value
|
||||
problem = problem.add_variable(var, dom, ini);
|
||||
};
|
||||
let mut problem = problem
|
||||
.add_constraint(|_| true)
|
||||
.finish();
|
||||
let problem = problem.finish();
|
||||
|
||||
if let Some(one_result) = problem.solve_one() {
|
||||
Json(TemplateObject {
|
||||
items: one_result
|
||||
|
||||
@@ -120,12 +120,11 @@ export default {
|
||||
body,
|
||||
})
|
||||
.then((res) => {
|
||||
this.is_loading = false;
|
||||
return res.json();}
|
||||
)
|
||||
.then((data) => this.template.updateJson(data))
|
||||
.catch((err) => console.error(err));
|
||||
|
||||
this.is_loading = false;
|
||||
},
|
||||
unsetMeal: function(mealKey) {
|
||||
let idx = this.template.findIndexByKey(mealKey);
|
||||
|
||||
Reference in New Issue
Block a user