Refactores solver, removes dead binary code

This commit is contained in:
2019-01-21 21:08:50 +01:00
parent 14f604283c
commit 940927d376
2 changed files with 122 additions and 114 deletions

View File

@@ -32,65 +32,115 @@ impl<V: fmt::Debug> fmt::Debug for Domain<V> {
}
}
type Constraint<'a,V> = fn(&Variables<'a,V>) -> bool;
/// Returns all possible Updates for next assignements, prepended with
/// a Clear to ensure the variable is unset before when leaving the branch.
fn assign_next<'a,'b, V>(assign: &'b Variables<'a, V>, domain: &'a Domain<V>)
-> Option<Vec<Assignment<'a, V>>>
where V: fmt::Debug
{
// Panics on empty domain
// If domain values are filtered, then the branch is a dead end
if domain.values.is_empty() { panic!("No values in domain : {:?}", domain); };
pub struct Problem<'a, V> {
/// The initial assignements map
variables: Variables<'a, V>,
/// Each variable has its associated domain
domains: HashMap<String, &'a Domain<V>>,
/// Set of constraints to validate
constraints: Vec<Constraint<'a,V>>,
}
// TODO: should be able to inject a choosing strategy
if let Some((key,_)) = assign.iter().find(|(_, val)| val.is_none()) {
let mut updates = vec![Assignment::Clear(key.clone())];
// TODO: should be able to filter domain values (inference, pertinence)
for value in domain.values.iter() {
updates.push(Assignment::Update(key.clone(), value));
impl<'a,V> Problem<'a, V> {
pub fn build() -> ProblemBuilder<'a,V> {
ProblemBuilder::new()
}
/// Returns all possible Updates for next assignements, prepended with
/// a Clear to ensure the variable is unset before when leaving the branch.
fn _assign_next(&self) -> Option<Vec<Assignment<'a,V>>> {
// TODO: should be able to inject a choosing strategy
if let Some((key,_)) = self.variables.iter().find(|(_, val)| val.is_none()) {
let domain = self.domains.get(key).expect("No domain for variable !");
let mut updates = vec![Assignment::Clear(key.clone())];
if domain.values.is_empty() { panic!("No value in domain !"); }
// TODO: should be able to filter domain values (inference, pertinence)
for value in domain.values.iter() {
updates.push(Assignment::Update(key.clone(), value));
}
Some(updates)
} else { // End of assignements
None
}
Some(updates)
} else { // End of assignements
None
}
/// Checks that the current assignments doesn't violate any constraint
fn _is_valid(&self) -> bool {
for validator in self.constraints.iter() {
if validator(&self.variables) == false { return false; }
}
return true;
}
/// Visit all possible solutions, using a stack.
pub fn solve_all(&mut self) -> Vec<Variables<'a,V>>
where V: Clone + fmt::Debug
{
let mut solutions: Vec<Variables<V>> = vec![];
let mut stack: Vec<Assignment<'a, V>> = vec![];
stack.append(&mut self._assign_next().unwrap());
loop {
let node = stack.pop();
if node.is_none() { break; };
match node.unwrap() {
Assignment::Update(key, val) => {
// Assign the variable and open new branches, if any.
*self.variables.get_mut(&key).unwrap() = Some(val);
// TODO: handle case of empty domain.values
if let Some(mut nodes) = self._assign_next() {
stack.append(&mut nodes);
} else {
// Assignements are completed
if self._is_valid() {
solutions.push(self.variables.clone());
};
};
},
Assignment::Clear(key) => {
// We are closing this branch, unset the variable
*self.variables.get_mut(&key).unwrap() = None;
},
};
};
solutions
}
}
/// Visit all possible solutions, using a stack.
pub fn solve_all<'a, V>(
mut assign: Variables<'a, V>,
domain: &'a Domain<V>,
is_valid: fn(&Variables<'a,V>) -> bool
) -> Vec<Variables<'a, V>>
where V: Clone + fmt::Debug
{
let mut solutions: Vec<Variables<V>> = vec![];
let mut stack: Vec<Assignment<'a, V>> = vec![];
stack.append(&mut assign_next(&assign,domain).unwrap());
loop {
let node = stack.pop();
if node.is_none() { break; };
match node.unwrap() {
Assignment::Update(key, val) => {
// Assign the variable and open new branches, if any.
*assign.get_mut(&key).unwrap() = Some(val);
// TODO: handle case of empty domain.values
if let Some(mut nodes) = assign_next(&assign, domain) {
stack.append(&mut nodes);
} else {
// Assignements are completed
if is_valid(&assign) {
solutions.push(assign.clone());
};
};
},
Assignment::Clear(key) => {
// We are closing this branch, unset the variable
*assign.get_mut(&key).unwrap() = None;
},
};
};
solutions
pub struct ProblemBuilder<'a, V>(Problem<'a, V>);
impl<'a, V> ProblemBuilder<'a, V> {
fn new() -> ProblemBuilder<'a, V> {
ProblemBuilder(
Problem{
variables: Variables::new(),
domains: HashMap::new(),
constraints: Vec::new(),
})
}
pub fn add_variable(
mut self,
name: String,
domain: &'a Domain<V>,
value: Option<&'a V>,
) -> Self {
self.0.variables.insert(name.clone(), value);
self.0.domains.insert(name, domain);
self
}
pub fn add_constraint(mut self, cons: Constraint<'a,V>) -> Self {
self.0.constraints.push(cons);
self
}
pub fn finish(self) -> Problem<'a, V> {
self.0
}
}
@@ -99,41 +149,41 @@ mod tests {
#[test]
fn test_solver_find_pairs() {
use super::*;
// Find all pairs of two differents
let assign: Variables<i32> = [
("Left".to_string(), None),
("Right".to_string(), None),
].iter().cloned().collect();
let domain = Domain::new(vec![1,2,3]);
let constraint = |assign: &Variables<i32>| {
assign.get("Left").unwrap() == assign.get("Right").unwrap()
};
let mut problem: Problem<_> = Problem::build()
.add_variable(String::from("Left"), &domain, None)
.add_variable(String::from("Right"), &domain, None)
.add_constraint(
|assign: &Variables<i32>| {
assign.get("Left").unwrap() == assign.get("Right").unwrap()
})
.finish();
let solutions: Vec<Variables<i32>> = vec![
[("Left".to_string(), Some(&3)), ("Right".to_string(), Some(&3)),].iter().cloned().collect(),
[("Left".to_string(), Some(&2)), ("Right".to_string(), Some(&2)),].iter().cloned().collect(),
[("Left".to_string(), Some(&1)), ("Right".to_string(), Some(&1)),].iter().cloned().collect(),
];
assert_eq!(solve_all(assign, &domain, constraint), solutions);
assert_eq!(problem.solve_all(), solutions);
}
#[test]
fn test_solver_find_pairs_with_initial() {
use super::*;
// Find all pairs of two differents
let assign: Variables<i32> = [
("Left".to_string(), None),
("Right".to_string(), Some(&2)),
].iter().cloned().collect();
let domain = Domain::new(vec![1,2,3]);
let constraint = |assign: &Variables<i32>| {
assign.get("Left").unwrap() == assign.get("Right").unwrap()
};
let mut problem: Problem<_> = Problem::build()
.add_variable("Left".to_string(), &domain, None)
.add_variable("Right".to_string(), &domain, Some(&2))
.add_constraint( |assign: &Variables<i32>| {
assign.get("Left").unwrap() == assign.get("Right").unwrap()
})
.finish();
let solutions: Vec<Variables<i32>> = vec![
[("Left".to_string(), Some(&2)), ("Right".to_string(), Some(&2)),].iter().cloned().collect(),
];
assert_eq!(solve_all(assign, &domain, constraint), solutions);
assert_eq!(problem.solve_all(), solutions);
}
}